Toggle menu
15
236
70
27.5K
Kenshi Wiki
Toggle preferences menu
Toggle personal menu
Not logged in
Your IP address will be publicly visible if you make any edits.
name
[[File:{{{image}}}|frameless]]
Domain, codomain and image
Domaindomain
Codomaincodomain
Imagerange
Basic features
Parityparity
Periodperiod
Specific values
At zerozero
Value at +∞plusinf
Value at −∞minusinf
Maximamax
Minimamin
Value at vr1f1
Value at vr2f2
Value at [...][...]
Value at vr5f5
Specific features
Asymptoteasymptote
Rootroot
Critical pointcritical
Inflection pointinflection
Fixed pointfixed

notes

Blank syntax

{{Infobox mathematical function
| name = 
| image= |imagesize= <!--(default 220px)--> |imagealt=

| parity= |domain= |codomain= |range= |period=

| zero= |plusinf= |minusinf= |max= |min=
| vr1= |f1= |vr2= |f2= |vr3= |f3= |vr4= |f4= |vr5= |f5=

| asymptote= |root= |critical= |inflection= |fixed=

| notes = 
}}

Parameters

  • Pairs VR1-f1, f1-VR2, etc. are used for labeling specific value functions. Suppose a function at the point e has a value of 2e and that this point is because of something specific. In this case you should put that as VR1 = eand f1 = 2e. For the next point is used a couple of VR2-f2, etc. If you run out of points (five currently available), ask for more.
  • Variables heading1, heading2, heading3 define whether some of the headlines basic properties, specific values, etc. be displayed. If you do not want a title to be displayed, simply delete the variable from the template. Set the value of the variable to 0 or anything will not prevent the display title.
  • Variables plusinf and minusinf indicate the value function at + ∞ and - ∞.
  • root is the x-intercept, critical is the critical point(s), inflection is inflection point(s)
  • fixed is fixed point(s)

Example

The code below produces the box opposite:

Sine
File:Sine one period.svg
General information
General definitionsin(α)=oppositehypotenuse
Motivation of inventionIndian astronomy
Date of solutionGupta period
Fields of applicationTrigonometry, Integral transform, etc.
Domain, codomain and image
Domain(−, +) a
Image[−1, 1] a
Basic features
Parityodd
Period2π
Specific values
At zero0
Maxima(2kπ + π/2, 1)b
Minima(2kππ/2, −1)
Specific features
Rootkπ
Critical pointkπ + π/2
Inflection pointkπ
Fixed point0
Related functions
ReciprocalCosecant
InverseArcsine
Derivativef(x)=cos(x)
Antiderivativef(x)dx=cos(x)+C
Other Relatedcos, tan, csc, sec, cot
Series definition
Taylor seriesxx33!+x55!x77!+=n=0(1)n(2n+1)!x2n+1
Generalized continued fractionx1+x223x2+23x245x2+45x267x2+.

Gamma
File:Gamma plot.svg
The gamma function along part of the real axis
General information
General definitionΓ(z)=0xz1exdx ,(z)>0 
Deriver of General definitionDaniel Bernoulli
Motivation of inventionInterpolation for factorial function
Date of solution1720s
ExtendsFactorial function
Fields of applicationProbability, statistics, combinatorics
Main applicationsprobability-distribution functions
Domain, codomain and image
Domain - ℤ0-
Image{0}
Basic features
ParityNot even and not odd
PeriodNo
Analytic?Yes
Meromorphic?Yes
Holomorphic?Yes except at ℤ0-
Specific values
MaximaNo
MinimaNo
Value at +(n1)!
Value at 0-Not defined
Specific features
RootNo
Critical point0-
Inflection point0-
Fixed point 1
Poles0-
Transform
Corresponding transformMellin transform
Corresponding transform formulaΓ(z)={ex}(z).
{{Infobox mathematical function
| name = Sine
| image = Sinus.svg
| parity=odd |domain=(-∞,∞) |range=[-1,1] |period=2π
| zero=0 |plusinf= |minusinf= |max=((2k+½)π,1) |min=((2k-½)π,-1)
| asymptote= |root=kπ |critical=kπ-π/2 |inflection=kπ |fixed=0
| notes = Variable k is an [[integer]].
}}

Tracking category

See also